
1988

N89 - 14. 16 4 =_o-_/
l

NASA/ASEE SUMMER FACULTY RESEARCH FELLOWSHIP PROGRAM 7 _ iV

JOHN F. KENNEDY SPACE CENTER

UNIVERSITY OF CENTRAL FLORIDA

THE DESIGN OF AN INTELLIGENT HUMAN-COMPUTER INTERFACE

FOR THE TEST, CONTROL AND MONITOR SYSTEM .../,.

. _.s__.'i_
?7

Prepared By: William D. Shoaff

Academic Rank: Assistant Professor

University and Department:

NASA/KSC:

Division:

Branch:

Florida Institute of Technology

Computer Science

Software Development

Application Software

NASA Counterpart: Les Rostosky

Date: August 31, 1988

Contract No.: University of Central Florida

NASA-NGT-60002

311

Abstract

The graphical; intelligence and assistance capabilities of a human-computer

interface for the Test, Control, and Monitor System at Kennedy Space Center

are explored. The report focuses on how a particular commercial off-the-shelf

graphical software package, DataViews, can be used to produce tools that build

"widgets" such as menus, text panels, graphs, icons, windows, and ultimately

complete interfaces for monitoring data from a application; controlling an ap-

plication by providing input data to it; and testing an application by both

monitoring and controlling it.

A complete set of tools for building interfaces is described in a manual for the

TCMS toolkit. Simple tools create primitive widgets such as lines, rectangles and

text strings. Intermediate level tools create pictographs from primitive widgets,

and connect processes to either text strings or pictographs. Other tools create

input objects; DataViews supports output objects directly, thus output objects

are not considered. Finally, a set of utilities for executing, monitoring use,

editing, and displaying the content of interfaces is included in the toolkit.

The related concepts of intelligence and assistance are e/r,@lored. An HCI can

be intelligent by obeying human factors guidelines; havig_ knowledge of the ap-

plication it is running; anticipating its future states; and by confiKuring itself to

the ability of the operator. Help for the operator is provided at many levels with

the knowledge possessed by the interface guiding the operator to relevant and

timely information. Methods of integrating intelligence and operator a_jstance
into the graphics module of the interface are presented.

Recommendations for how to proceed with the implementation of the TCMS

toolkit are given.

312

Contents

1 Introduction

1.1 General Requirements

1.2 Development and Use of the Interface

1.2.1 Monitoring Applicatiom_

1.2.2 Controlling Applications

1.2.3 Testing Applications

1.2.4 Operating the TCMS IrLterface

Graphical Design of the Interface

2.1 The DataViews Software Package

2.1.1 DV-Draw and DV-TOOL_ _ .

2.1.2 Input and Output

2.1.3 Coordinate Systems

2.2 Creating an Interface

2.2.1 Creating Menu Items

2.2.2 Creating a Menu

2.2.3 Creating a Window

2.2.4 The Interface

2.3 The Widgets Comprising the TCMS Interface

2.3.1 Low Level Widgets

2.3.2 Intermediate Level Widgets

2.3.3 Input Widgets

2.3.4 High Level Widgets

2.4 Utilities for the Operator

2.5 The File System for the TCMS Interface
2.5.1 View Files

313

3

4

2.5.2

2.5.3

2.5.4

2.5.5

The Init File

Help Files

Knowledge Files

Log Files

Intelligence in a Human-Computer Interface

3.1 What is an Intelligent Human-Computer Interface?

3.1.1 Obeying Human-Factor Guidelines

3.1.2 Knowledge of the Application

3.1.3 Assisting the Operator

3.1.4 Evaluating the Operator

The

4.1

4.2

Help Facility for the TCMS Interface

Properties of the Help Facility

Integrating the Help Facility into the TCMS Interface

5 Manual Pages

6

5.1 Primitive Graphic Object Facilities

5.2 Intermediate Level Facilities

5.3 Input Facilities

5.4 Output Facilities

5.5 High Level Tools

5.6 Utility Tools

Conclusions and Recommendations

6.1 Summary of the Report

6.2 Recommendations for Implementing the Design

314

1. Introduction

This report describes the design of an intelligent human-computer interface

(iHCI) for the Test, Control, and Monitor System (TCMS) at NASA Kennedy

Space Center. The TCMS interface will interact with hardware being developed

as part of the space station project. Briefly, the interface is graphics based, uses

intelligence when interacting with the operator, and provides a comprehensive

help facility based on textual, graphical and audible information.
The TCMS interface is not a static object, indeed the hardware to be tested,

monitored, or controlled has yet to be designed or specified. The interface built

will need to be modified dynamically a:s hardware and applications that inter-

act with the hardware are built and written. This lack of specification forces

abandoning the idea of creating a static interface designed for one purpose, and

requires, almost, the use of a magical incantation to the effect, "create an in-

terface with a given menu structure, system message area, icons, and graphical

input devices, and oh, by the way, use this knowledge about graphics and the

application, and supply this help information when the operator fails to under-

stand or needs clarification." Thus, much of this report deals with specifications

for tools which can be used to invoke this incantation and thereby create a

complex interface from a set of simple resources, or "widgets."

The report focuses on the graphics portion of the interface, presents require-

ments and a preliminary design for the TCMS interface, and discusses, less

formally, features of the interface which are beyond the scope of this document,

that is, the "knowledge..., and.., help information."

The report is organized by four main concerns: monitoring output from

a process, providing input to a process, creating a human-computer interface

from basic parts, and using a human-computer interface. These concerns are

discussed in chapters on graphics, intelligent human-computer interfaces, and

help facilities for the interface.

315

In addition, a set of manual pages describes the facilities and tools which

comprise the TCMS interface software package. These descriptions serve to

define the interface by specifying the tools used to build and manipulate the

interface.

Below, general requirements for the interface are given. These high-level re-

quirements represent broad guidelines which must be following in developing the

interface. More specific requirements are presented, as appropriate, throughout

the report.

I.I. General Requirements

There are numerous requirements for any human-computer interface; far too

many to llst in this report, see [6]. However, there are certain requirements

which need to be discussed.

A major requirement is that the TCMS interface obey the guidelines specified

in the Space Station Information System Human-Computer Interface Guide [6].

This document provides expert knowledge on the design of human-computer

interfaces. Certain of these guidelines are rules which should not be violated

while others are only recommendations.

Another requirement is that the operator should be able to customize the

interface to his or her own liking. For example, the user should be able to move,

resize, and change the color of objects on the screen. When an operator modifies

the interface, the SSIS HCIG guidelines should not be violated.

Since the hardware and application software with which the interface will

interact is unspecified, the interface should be extensible, allowing new features

to be added or old features to be altered as the TCMS system is developed.

The interface should be portable to many different workstations with high

resolution bit-mapped graphics displays. The interface will be written in the C

programming language and run under the UNIX operating system. The interface

should run under the control of a windowing system such as the X window

system.

The interface should provide appropriate information to the operator. This

help may vary from simple panels showing the currently available options, to

pages from a manual, to schematics of a system. Audible sounds should also be

used to alert and inform the operator. The operator should be able to easily

navigate through a complex structure of information, skipping unnecessary data

and focusing only on the information selected as relevant. The interface itself

316

should help the operator in this traversed of information.

The interface should be constructed using commercial off-the-shelf tools. The

design of this interface is quite ambitious, and clearly, starting from scratch

would make it nearly impossible. If ttm interface is to be implemented then

it is essential that appropriate interface building tools be used. Three basic

tools identified in the report are: a graphics based tool to provide the widgets

comprising the interface, an expert system to incorporate intelligence into the

interface, and a hypertext back-end to create a multi-linked help facility con-

taining textual and graphical information. Before a complete specification of the

interface can be given each of these basic tools needs to be selected. The present

discussion focuses on the graphics portion of the interface. V. I. Corporation's

DataViews software package has been selected for implementing the graphics

module of the interface. Some discussion of the AI tools and hypertext tools

needed is given in §3 and §4, respectively.

To understand what the requirements for the TCMS might be, it is helpful

to consider example scenarios for monitoring, controlling, and testing hardware.

There are two fundamental problems stated in the scenarios. First, how can

a interactive graphical interface be created from simple primitive objects? and

second, what features should be included in the interface to make it a useful,

flexible tool? These scenarios, presented in the following sections, provide an

informal specification for the capabilitie_ needed in the graphics module.

1.2. Development and Use of the Interface

This section presents, informally, four simple scenarios which could occur in the

development and use of the TCMS interface. The focus of the scenarios is on

the graphic capabilities of the system. To understand what the requirements for

the TCMS interface might be, it is helpful to consider how one might monitor,

control and test hardware, and how an operator will use the interface once it is

available. The scenarios discuss creation of graphical input and output objects,

merging such objects into complex objects, and the static and dynan_ic alteration

of the objects by an operator.

1.2.1. Monitoring Applications

Consider an application programmer who has just written a program to monitor

pressure at a valve. When executed, the program produces a stream of floating

317

point numbers directed to the standard output device. One would like to connect

the output stream to a meter so that the pressure can be "seen" by an operator of

the interface. In addition, one might want to store information about the valve,

e.g. its name, specifications, schematic, purpose, and so on. This information

can be used to provide help for the operator and to supply knowledge to the

interface itself.

To create this simple interface, one needs a dynamic graphical icon repre-

senting the meter, a means of connecting the output of the valve program to

the icon, and files of information about the valve. The icon, valve monitoring

process, data structures connecting them, and the information files should be

collected into one widget which can subsequently be included in a more complex

interface.

Next, consider an application that requires input data rather than an appli-

cation producing output.

1.2.2. Controlling Applications

In this scenario, an applications programmer has written a program to open

or close the valve. When executed, the program synchronously read a zero or

one from the standard input device which in turn closes or opens the valve.

One would like to attach the input for the process to a graphic on/off toggle to

operate the valve. Again certain information about the valve should be supplied

as part of a help facility and a knowledge facility.

Creating a widget for this application is both similar to and different from

creating the widget to monitor the valve. One still needs a dynamic icon, valve

control process, data structures connecting them, and information files, but

now one also needs a means of manipulating the icon to supply data to the

process. This required interaction technique makes controlling an application

more complex and difficult than monitoring an application. This point heavily

influences the selection of tools used to build the interface.

1.2.3. Testing Applications

Next, suppose that a second application programmer has written programs

which monitor and control a pump. The pump and the valve are to be joined

to form a pump/valve system. Also suppose that widgets which turn on and off

the pump and measure the pressure supplied by the pump have been created.

One would like to merge the four widgets into one widget creating an interface

318

for the pump/valve system. Once the :pump and valve are joined, the system

can be tested turning on and off the pump and monitoring the valve pressure.

Again, information relevant to the pump/valve system should be stored and

available to the interface and operator.

Other objects such as menus and m_sage areas may be needed to complete

the pump/valve interface. Thus, tools are needed to form complex structures

from elemental parts. One would like these parts to be reusable, and where pos-

sible, interchangeable so that multiple c_rstomized interfaces can be constructed.

1.2.4. Operating the TCMS Interface

Finally, once the interface has been created someone, an operator, will use the

interface to test, monitor, and control the hardware at NASA KSC. Inevitably,

this operator will find parts of the interface unsuitable to his or her needs. For

example, text sizes may be too small or too large, the default colors may be un-

pleasing, the functional assignment of keys may be confusing, and so on. Thus,

the operator may want to customize the interface to his or her specifications.

Ideally, the operator could make these changes dynamically by using a set of

utilities, supplied as part of the interface, to change text fonts, colors, key map-

pings and so on. These dynamic changes could be saved to a start-up or init file

which is read when the interface is initialized. Values assigned to parameters in

the init file control the initial display of the interface.

The TCMS interface should monitor the user, providing log files for gener-

ating statistics about the operator and the use of the interface. It must provide

help to the operator which, for the TCMS interface, may be quite varied. Fi-

nally, the interface should obey human factors guidelines and provide an efficient

means for performing useful work.

319

2. Graphical Design of the Interface

A human-computer interface (HCI) can be rather primitive or quite complex.

Indeed, such interfaces have progressed from an operator specifying circuit con-

nections in a breadboard, to simple teletype monitors, to high resolution bit-

mapped graphics workstations. A graphical interface consists of a number of

objects, often called "widgets", which can be used to display data or accept

data from an operator. For example, the interface may consist of menus for

selecting applications to run, graphs showing the output of the applications,

and message areas where system relevant information is shown. There are two

related questions addressed in this chapter. First, how does one create an inter-

face which meets the TCMS requirements as specified in §1.1, and second, how

will the operator be able to effectively use the interface to do meaningful work?

A simple example showing how an interface can be constructed is provided to

explain the need for tools to build an interface. The example shows how a menu

can be embedded inside a window, creating a simple, but complete interface. A

primary reason for proposing a toolkit for building interfaces is that the TCMS

interface is not a static, well-defined object. The hardware and software with

which the interface must interact has often not been specified or designed. Thus,

the TCMS interface must be extensible so that new capabilities can be added as

the need arises. A set of tools for creating basic graphic parts or widgets from

which the TCMS interface can be constructed is proposed. Formal specifications

for all facilities in the TCMS interface toolkit are given in §5.

The operator of the TCMS interface must be provided with certain utilities

allowing the alteration of objects within the display. For example, the operator

may wish to move or resize graphs, change the color of menus, or the fonts

for textual messages. Methods by which the attributes of the interface can be

controlled by the operator are are presented in §2.4 and §2.5.2.

V.I. Corporation's DataViews software package is used to build the graphic

320

module of the interface. Section 2.1 contains enough basic information about

DataViews to make this report understandable to someone unfamiliar with

DataViews.

2.1. The DataViews Software Package

DataViews, a trademark of V.I. Corporation, is comprised of two modules: i:)v-

Draw and DV-Tools. DV-Draw is an interactive program which can be used to

connect the output of a process to a dynamic graph or icon and store the process

and graph as a view file which can later be re-played. DV-Tools is a library of

graphic routines that can be used to create and manipulate views. This section

is not a tutorial on DataViews and its capabilities, but does contain enough basic

information about DV-Draw and DV-Tools to make the report comprehensible

to someone not familiar with DataViews. The reader is referred to [1], [2],

and [3] for more detailed information. DataViews will be discussed in terms of

its ability to monitor output from a process, provide input to a process, facilitate

the creation of user interfaces, and support user interactivity.

2.1.1. DV-Draw and DV-Tools

DV-Draw is an interactive program wit, h which the user can select graphs from

a collection of predefined bar charts, pie charts, meters, line graphs, etc., and

connect these graphs to data sources, typically processes or files. Other basic

primitives such as lines, rectangles, circles, polygons and text can be added to

the picture created with DV-Draw. Attributes such as line style, fill style and

color can be chosen for these primitives. The picture can be saved as a view file

and later replayed starting the processes or opening the files and displaying the

data from the processes or files using the graphs. The view file, created either

using the save command in DV-Draw or the Tvisave() utility of DV-Tools,

forms the basic object out of which the TCMS interface is created. The view

file contains a representation of a view data structure shown in figure 2.1.

The drawing object contains a list of graphical objects which may be static

lines, circles and rectangles, or dynanfic objects such as graphs, subdrawings

or color objects. DataViews supports 10 primitive graphic objects, 4 dynamic

objects, and 5 non-graphical objects. The 10 primitive objects are:

I. point object (pt)

321

I View

I DSL I ' :[

1
Drawing

Figure 2.1: The View Data Structure

2. lille object (In)

3. circle object (el)

4. arc object (ax)

5. rectangle object (re)

6. polygon object (py)

7. text object (tx)

8. vector text object (vt)

9. drawing object (dr)

10. subdrawing object (sd)

Variable descriptors can be associated with each attribute of the primitive ob-

jects. Altering the value of the variable descriptors and updating the display

changes the appearance of the primitive.

The 4 dynamic objects are:

1. data group object (dg)

2. input object (in)

3. threshold table object (tt)

322

4. input technique object (it)

Data group objects present data via a graph. Input objects are graphical icons

which can be used to accept data from an operator. Input techniques such as

menus, valuators, and toggles are connected to the input objects. Threshold

tables contain value object pairs. A variable descriptor connect to the threshold

table is used to specify which object should be displayed. Threshold table are

used to support dynamics.

The 5 non-graphical objects are:

1. deque object (dq)

2. color object (co)

3. transform object (xf)

4. screen object (so)

5. location object (lo)

A deque is a data structure used to store objects. A color object is used to

represent an object's foreground color. Text objects, drawing objects, data

group objects, input objects and screen objects can also contain a background

color. A transform object is a 3 by 3 homogeneous transform matrix that can be

used to position an object. A screen object is DataViews interface to the display

device. A location object represents keyboard or mouse events. It points to a

key code representing the event, a screen location point and a world location

point. Locator objects are used to control the interaction between the operator
and the interface.

The data source list in figure 2.1 is a list of processes and files which supply

data to the dynamic objects in the drawing. The data sources are connected to

the objects in the drawing by means of internal variable descriptors and buffers.

It is important to notice that the flow of data is from the data source to

the drawing. That is, it is not directly possible to have changes in the graphic

objects serve as input for a process. Interaction handlers are required to allow

input.

2.1.2. Input and Output

Any interactive human-computer interface must supply some capability for input

and output. The TCMS interface requir_ the ability to flexibly monitor output

323

from processes using graphs, dynamic icons and textual displays. Input to the

interface should take place from graphical devices such as menus, toggles and

sliders, as well as typed text.

DV-Draw provides an easy to use method for creating graphs with attached

data sources and saving these as view Files. However, one can only create and

save the layout or drawing for a graphical input device using DV-Draw. To

attach this drawing to a process so that it can appear as an input device to

a process requires writing a program using the DV-Tools library. To overcome

this limitation, a collection of tools can be developed to allow an application

programmer to easily connect a graphical input device to a process. These tools

are discussed fully in the manual pages of §5,

DV-Tools supports 8 types of interaction handlers. There are 6 primitive

interactionhandlers: Vl_checklist, VIImenu, Vllpalatte, VNslider, VNtext and

Vl_toggle. Two complex interactionhandlers also exist. VNcombiner allows a

number of input objects to be combined into one input object. VNmulti uses a

shared input area to display one of a number of input objects. The DV-Tools

User's Guide and Reference Manual contain detailed information on how these

interactionhandlers can be used.

The interactionhandlers interpretcertain key presses as indicating actions

to be perform. There are 5 valid action keytypes: DONE_KEYS, CAI_CEL_KEYS,

SELECT_KEYS, RESTORE_KEYS and CLEAR_KEYS. Keyboard input and mouse events

can be mapped to these keys. The TCMS interfacemaps SELECT_KEYS to one

clickof the leftmouse button and CA_ICEL_KEYS to one clickof the right mouse

button. One clickof the middle mouse button activatesthe help module of the

interface.These are default key settings and can be re-mapped by the opera-

tor. When a mapped key ispressed while the cursor is in specifiedareas of an

input object, the interactionhandler returns a service resultand performs de-

fined tasks. Valid serviceresultsaxe INPUT_ACCEPT, INPUT_DONE, If|PUT_CANCEL,

INPUT_USED, and INPUT_U_USED. The serviceresultcan be used to triggerother

events.

The TIoPoll utilityisthe DV-Tools routine isused to detect external events.

There are 4 valid types of polling:

1. LOC_POLL

2. PICK_POLL

3. WAIT_PICK

324

4. WAIT_CHANGE

TloPoll returns a location object with key press information that can be used

to control execution of the interface.

DataViews supports 40 distinct display formatters or data structures which

serve as output devices, placing the acttml graphic encoding of the data on the

screen. In addition, custom display formatters can be written and included

in DV-Tools applications or invoked from DV-Draw. Due to this rich set of

graphical objects which can be used for display of data, little attention is given

in this report to the creation of output displays to monitor data from a data

source. Instead, it is assumed that DV-Draw will be used to create views to

monitor data and custom displays will be built only when needed and then

by an experienced DV-Tools programmer. Subsequent versions of the TCMS

interface may include tools for building display formatter.

2.1.3. Coordinate Systems

DataViews defines a world coordinate system in terms of ordered pairs of integers

in the range -16393 to 16383. This makes the origin the center of the drawing.

User specified coordinate systems can be used when building an interface. A

one-to-one aspect ratio should be used to avoid distortion of images on the dis-

play. Objects defined in a user's coordinate space are mapped by transformation

objects, i.e. a 3 x 3 homogeneous matrices, into the DataViews world coordinate

system.

An interface can be positioned on the display device using the screen coor-

dinate system of the physical display on which the interface is running. This

positioning is typically handled by the window manager for the display given an

initial position for the interface. A virtual coordinate system defined by integer

pairs from 0 to 32767 is used to map world coordinates to screen coordinates.

Graphic objects, in general, are not bound by position and size until the

object is included inside of another object. Even so, every pickable object can

be resized and repositioned dynamically.

2.2. Creating an Interface

The tools and widgets necessary to create a menu, which can be embedded

in a window to make a simple interface, are discussed. Creating a menu is a

nontrivial task as there are numerous design decisions which must be made, too

325

many to specify at a single time. For example, one must specify the selection

technique, the menu style, its color, position, size, and, not least, the selectable

items to be included in the menu. Some of these attributes of a menu, e.g.

color, position and size, are dynamic and should not be determined until the

menu is included in a window. Even then, these attributes should be alterable,

within guidelines, by the operator. Other attributes, e.g. interaction technique

and style, are usually defined when the menu is created. The individual menu

items comprising the menu should exist before the menu is created. A bottom-

up description of the interface building process is presented. This shows how

individual menu items can be merged into a menu, which is then included in a

window creating an interface.

2.2.1. Creating Menu Items

A menu item is a selectable graphic object together with a side effect that occurs

when the object is picked. The graphic object is encoded either as a text string

or a pictograph. The side effect is represented as a text string which should be

the name of a process together with required or optional flags and values.

Here, a text menu is described although the TCMS interface can include

iconic menus as well. To create a menu item, the interface builder must be sup-

plied with an executable process, which, knowing its function, can be attached

to a graphic object. Suppose we have a process, named open_valve, which oper-

ates a valve and the text string "Open Valve" which will be used as the graphic

object in the menu item. When the object is selected, the process open_valve
is activated.

First a primitive tool, called Ctx, can be used to create a view file containing

a drawing with the text object "Open Valve." Text objects have attributes of

background color, foreground color, text direction, text justification and text size

together with an anchor point, specified in either world or screen coordinates,

which is used to position the text. The background color is the color used for the

bounding box of the text, foreground color is the color of the text, the direction

can be either horizontal or vertical. The justification places the anchor point at

any of 9 positions in the text (the four corners, the midpoints of the 4 edges,

or the center). The size is an integer and determines the size of the text. Since

text fonts are hardware dependent, one should use vector text objects for text

menus. Text objects have several limitations which make them unsuitable for all

but the most simple menus. For example, the background color of text objects

can produce undesirable artifacts, there are only two directions in which text

326

can be written and the size of the text i,s machine dependent.

The tool Ctx can be invoked as shown in 2.1.

Ctx -t "Open Valve" -o open_value_tx.v (2.1)

Here the -t option specifies that the string "Open Valve" is to be stored in

the drawing of a view as a text object and the -o option redirects the output

of Ctx into the view file open_vahe_tx v. Options setting other attributes for

the text can be used, but usually there is no need to do so until later in the

interface building process. Colors, positions, and so on, should be determined

when the menu item, the menu, or the interface is created.

At this step in the process, it is desirable to supply other information about

the view file created by Ctx. For example, the SSIS HCIG requires that character

heights range from 16.0 to 26.8 minutes of arc, with 20.0 minutes preferred.

Using an average distance from the operator to the screen, this requirement

can be converted into a height range for the text. Text sizes which are too

small or too large may be disallowed. This and other human factors guidelines

for text can be collected into a knowledge base of information. The knowledge

base can be queried when text is altered. The TCMS interface package includes

such a file, tx.k, which, by default, is appended to the data source list of the

output view file. In addition, application specific knowledge can be appended

to the view file by using the -k option followed by a list of knowledge base files.

Finally, help files should be supplied. A default help file, tx. hlp, for text object

is included in the output view file. Application specific help files can also be

appended to the data source list of the view by using the -h option. At each

stage in the interface building process, knowledge bases and help files can be

added to the interface, see 2.5.

The next step is to attach the text view to a process and store the combina-

tion as a view file. Here tile Cmi tool is used. It can lw invoked as

Cmi -v open_valve_tx.v -p open_valve -o open_valve_mi .v (2.2)

Crai creates a view containing the text object from the file open_valve, tx. v and

the process open_valve. The view is saved in the file open_valve_m±, v. Again,

other options for Cra± can be selected, s_'e §5.

The saved view file open_valve_rat, v can not be played as a view file and will

not work as an input device. Such a menu item view file is only an intermediate

widget used in the interface building process. Several menu item view files can
however be collected into one menu view file.

327

2.2.2. Creating a Menu

Suppose now that several menu item view files have been created as in the last

section. For example, suppose that menu item view files to open a valve, close a

valve, start a pump and stop a pump exist. The invocation of the Cmenu facility,

as shown in 2.3, integrates these menu items into one menu.

Cmenu -1 open_valueuai, v close_valve_mi.v start_pump_mi.v \

stop_pump.mi, v -o pump_valve_mn.v.

(2.3)

Here, Cmenu merges the list of view files given after the -1 option into one view

and saves the result in the pump_valve__n.v file.

A -f option can be used to have Cmenu read options from a file rather than

from the command line. This is useful for long menu item lists.

The -s option allows the choice of one of 10 possible menu styles, the default

being a horizontal menu bar. Other bar style menus include vertical bars, hori-

zontal stacks and vertical stacks. Bar menus are always visible. The remaining

menu styles are Pop-up, pull-down, pull-up, pull-right, pull-left and card menus.

The advantage of these menu styles is that they require a minimum of display

space as they are displayed only when the operator needs them, thereby reducing

irrelevant information. Pop-up menu appear underneath the cursor when the

appropriate keys are pressed. The pull-down, pull-up, pull-right and pull-left

menus are frequently used as sub-menus of bar or pop-up menus. A card menu

can be thought of as a deck of cards spread over the display. The card under

the cursor is displayed and all other cards are inactive.

The -vn option specifies an interaction handler which defines the input tech-

nique for tile menu. Currently there is only one interaction handler for menus,

VNmenu, which is supplied as part of the DataViews software package. Using

VNmenu, the logical names of the menu items are mapped to internal names

Item_l .text, ..., ItemII. text, which are surrounded by pickable rectangles

Item_l. area, ..., ItemA_. area. The selection of a menu item is made by posi-

tioning the cursor inside one of the menu item areas and pressing the left mouse

button. This action updates the variable descriptor associated with the menu

which is used to switch between a number of choices. Depending upon the choice

one of many processes is executed. See §5 for more information.

328

2.2.3. Creating a Window

Once a menu has been created, it can be embedded into a window. The window

consists of a border, an interior region_ and zero or more graphic objects. The

window can be placed inside of an interface. The tool Cwindow is used to create

a window. Options exist for selecting a border .style, interior background color,

position size and color for each graphic object included in the window.

In this simple example, Cwindow would be oxocuted as

Cwindow -i pump_value_mn.v -o pump_valve_wn.v (2.4)

Default borders, positions, sizes and colors are used if none are specified in

the command line.

2.2.4. Tile Interface

The facility Cinterface is the highes', level tool in the toolkit. An interface

contains one or more windows, inside ,,f a border. A window may be open or

closed (iconic). The view file created with Cinterface can be played using the

play command, described in §2.4 and !i5.

To complete the example, Cinterface can be called as below

Cinterface -i pump_value_wn.v -o pump_valve_f.v (2.5)

creating the interface view file pump_valve_if, v

Default display devices, log files, and user init files, are used if none are

specified in the command line.

2.3. The Widgets Comprising the TCMS Interface

This section briefly lists all of the widgets available for creating an interface.

2.3.1. Low Level Wldgets

A widget is a view file. There are 7 primitive graphic objects supported by the

TCMS toolkit: arc (at), circle (el), lin_._ (ln), rectangle (re), polygon (py), text

(tx), and vector text (vt). Each of these can be stored in a view file together

with variable descriptors used to alter values for the attributes of the objects,

making them dynamic. See _5.1.

329

2.3.2. Intermediate Level Widgets

A number of intermediate level graphical objects are useful. There are 4 inter-

mediate level widgets in tile TCMS toolkit: drawings (dr), menu items (mi),

subdrawings (sd) and threshold tables (tt).

Drawings are a collection of dynamic objects and can be 1used to create static

and dynamic pictographs and other complex graphical objects.

Menu items, as described in §2.2.2, are used as building blocks for menus.

Menu items are used to create other input objects such as checklists and multi-

plexors.

Subdrawings are static drawings that can be included or referenced in other

drawings. An include subdrawing becomes a static part of the view, which refer-

enced subdrawings point to a view file, which if changed, changes the subdrawing
as well.

Threshold tables are used to map values to objects. The value of a variable

descriptor associated with the threshold table is used to select which object to

display. Threshold tables are used primarily to provide color dynamics to the

objects in the interface. See §5.2.

2.3.3. Input Widgets

Input objects which can be stored as views include: checklists, menus, palettes,

panels, sliders, and toggles. These widgets are described in §2.1 and [2], [3].

These input objects can be grouped into compound input objects.

Future versions of the TCMS interface toolkit may also include output ob-

jects such as dials, pie charts, and so on. See §5.3.

2.3.4. High Level Widgets

High level widgets are: windows, scroll windows and icons. An icon is a closed

window and it may contain an active or inactive process. Windows may be open
or closed, active or inactive, and interactive or non-interactive. Scroll windows

allow panning over a display.

The interface is the highest level widget. An interface can be played display-

ing all of the enclosed views with their processes, files and drawings.

The tools used to create the widg;ets described in this section are documented

in the manual pages of §5.

330

2.4. Utilities for the Operator

An important question is how the TCMS interface will be used and modified by

the operator. This section focuses on utilities for modifying the interface.

There are two methods by which the operator can control the appearance

of the interface. Statically, the user can set parameters in an init file which

controls the initial display of the interface, see 2.5.2. Dynamically, the user can

select operations from a utility menu which is supplied automatically with every

interface created using the TCMS toolkit. The utility menu contains commands

to move and resize objects, select colors for objects, edit fonts, edit line styles.

set action keys, request help and quit execution of the interaction session.

The TCMS toolkit also provides utilities for collecting statistics on the use of

the interface, verifying the consistency ot! an interface against a human-('omputer

interface knowledge base, and playing the interface. Also, there is a utility which

prints a description of objects and attributes in a view file, and a utility to edit

the attributes of objects in a view file. :3ee _5.6 for more information.

2.5. The File System for-the TCMS Interface

Files are used to store the views which define the interface, supply parameter

values when initializing the interface, provide help information for the user,

supply knowledge about the system, and record data for statistical analysis on

how the interface is used. Each of thes,:? file types is discussed in turn.

2.5.1. View Files

The view files are the most important files in the TCMS interface. View files

can be created either by using DV-Draw or the TviSave() utility of DV-Tools.

A view file contains a view data stru(ture consisting of a drawing and a data

source list. Simple view files can be mi.rged creating more complex views. Most

view files can be "played" using the play process, which reads the view file,

opens the files and processes in the da_a source list and displays the drawing of

the screen. See §2.1 and §5 for more information.

2.5.2. The Init File

Each user can create his or her own . t,:msrc file which is read when an interface

is executed using the play interfa(:e c_)mmamh A ,lefa,llt system file. init

331

file, located in the TCMS directory/usr/local/tcms is used to supply default

setting for the interface when the user has no . tcmsrc file. The format of entries

in the init file consist of attribute value pairs as shown in figure 2.2.

In figure 2.2 the initial background, border colors and border thickness are

set. A pop_up menu with five menu items is defined, Each menu item is then

given a text name and a process to run when the item is selected. In addition,

a system area with dynamic color positioned at the bottom of the screen and

displaying the output of the 3 processes time, ps and netstat, is created.

A complete specification of all attribute value pairs that may be included in

tile init file is beyond the scope of this report.

2.5.3. Help Files

Help files form an important part of any human-computer interface. At each

stage of the interface building process, help files may be attached to the data

source list of the view being created. The TCMS interface includes default help

files which can be used by the operator to show available commands, explain

the use of the utility function in the Utilities menu, and provide other system

information. Additional help files can be included in the interface. Typically,

these additional files are used to supply assistance about a particular application.

See §4 and §5 for more information.

2.5.4. Knowledge Files

Knowledge base files are used to store information on the application(s) run-

ning under control of the interface, the user of the interface, and human factors

guidelines for HCI design. Default system files incorporating knowledge of hu-

man factors guidelines are supplied as part of the TCMS toolkit. Additional

knowledge files can be included. See {i3 and §5 for more information.

2.5.5. Log Files

A system log file (/usr/local/tcms/adm/tcms.log) is used to monitor use of

the interface. At a minimum, the log file retains records of the user ids, time of

use, and length of use of the interf_tce. The log file can also be used to record

more detailed levels of interaction. Interaction monitoring to provide a user

profile is discussed more fully in §3.1,4. A user profile can be used to configure

the system to a particul,qr _por_tor.

332

Example init file for TCMS interface

Line that start with # are comments

Set attributes for the base view

WINDOW.background blue

WINDOW.bordercolor black

WINDOW.borderwidth 5

Define the base menu

MENU.style pop_up

MENU.number 5

MENU.color red

MENU.iteml.name

MENU.iteml.appl

Utilities

play utilitymenu

MENU.item2.name

MENU.item2.appl

TCMS

play tcms

MENU.item3.name Help

MENU.item3.appl help

MENU.item4.name

MENU.item4.appl

Close

iconify

MENU.itemS.name Quit

MENU.item5.appl exit

Configure the system area

SYSTEM.color dynamic

SYSTEM.number 3

SYSTEM.position bottom

SYSTEM.iteml.appI time

SYSTEM.item2.appl ps

SYSTEM.item3.appI netstat

Figure 2.2: Example Init File

333

3. intelligence in a Human-Computer
Interface

The author of this report in not an expert in artificial intelligence, expert systems

or other areas of cybernetics. However, the general requirement that the human-

computer interface constructed for the TCMS behave in an intelligent and useful

manner requires the consideration of questions, during this preliminary design

stage, which deal with embedding intelligence into the TCMS interface. This

chapter attempts to define intelligence in a human-computer interface and show

how such an interface can be implemented.

3.1. What is an Intelligent Human-Computer Interface?

A working definition of an intelligent human-computer interface (iHCI) is

Definition 1. An iHCI enforces good human factors _lidelines, has knowledge

of the application(s) running on the computer and interacting with the operator,

uses this knowledge to anticipate the operator's needs and actions, and evaluates

_he operator's ability so as _o provide a more convenient and e_cient interface

for the operator.

All four features of an iHCI are discussed below.

3.1.1. Obeying Human-Factor Guidelines

Human-factor guidelines tend to be static and global. The Space Station Infor-

mation System Human-Computer Interface Guide (USE-1000) specifies guide-

lines for the design and implementation of human-computer interfaces. The

334

TCMS interface is to follow these guide.ines. Tile guide includes detailed re-

quirements on how: (1) information shollld be presented to the user, (2) real-

time interactions between the user and the TCMS should be handled, and (3)

input of data from the user can be obtained. Each guideline is presented as a

natural language rule or requirement, often with a rationale accompanying the

guideline. The SISS HCIG represents a knowledge base of human factors guide-

lines for creating human-computer inter(aces. These human factors guidelines

are stable, but may change as new research in human factors engineering occurs

or as technology advances. The guidelines are also global in that they do not

change with different applications or operators.

It would be desirable to incorporate the SSIS HCIG into the software for the

interface, so that the integrity of the interface could always be checked against

the guidelines. To do so, an expert systenl shell capable of editing simple natural

language sentences and storing these s_ntences as a knowledge base of rules

and facts is needed. Then an inference engine that can be used to query the

knowledge base whenever a change to the interface is requested.

Operators have static control over gnLphical and human factors attributes of

the interface by using their .tcmsrc file, and dynamic control using the utility

functions supplied with the interface, see §2.5.2 and §2.4. Whenever the interface

is initiated the values set in the init file should be checked with the knowledge

base for validity. Default values can be substituted for invalid settings in the

• tcmsrc file. Similarly, whenever a utility function is used to alter the interface.

the operator's use of the utility is monitored to guarantee the alteration does

not violate specified guidelines. As a precaution, a tool, called fuzz, see §5.6 is

provided to check static attributes of an interface for consistency.

There are several question§ that must be settled before determining whether

or not it is possible to incorporate such intelligence into the interface. These

questions are discussed below, but can oidy be answered by people with expertise

in artificial intelligence.

First, an expert system shell, which can be used to build a knowledge base of

specified information together with rea+_oning methods about this information,

must be selected from available commercial or public domain software tools.

There are certain requirements that this expert system shell must meet to be

acceptable for use in the TCMS interface toolkit.

The SSIS HCIG guidelines are written in natural language sentences. An

expert system that recognizes true natural language would be desirable, however,

the author knows of no software pack_t_e capable of recognizing the guidelines

335

of the SSIS HCIG verbatim. Some rules may be easy to translate, while other

may prove quite difficult. The power of the rule editor provided by the shell
must be considered in the choice of the shell.

Assuming that the bulk of the SSIS HCIG could be incorporated as a knowl-

edge base of information, a second question is, can the knowledge base be

searched quickly enough to provide a good dialogue rate with the operator?

For a system as complex as the TCMS interface, with all of its accompanying

guidelines, a monolithic knowledge base would be much too rich to be useful

in a highly interactive environment. To overcome such delayed interaction, the

inference engine of the expert system shell should be able to access multiple

independent sub-knowledge bases when asked to verify that a change of state

in the interface is acceptable. For example, if an operator attempts to alter

the text size of a menu item descriptor, then it should be possible to run the

inference engine on a small file containing knowledge of guidelines on text and

its presentation. Thus, the SSIS HCIG should be partitioned into small logically

coherent knowledge bases, each small enough to be queried quickly.

Finally, since DataViews offers the ability to attach files and processes to

views, the inference engine must be able to access information stored as refer-

ences to files inside of view files. It is expected that any expert system shell can

access knowledge base files given their names. Thus, it would seem reasonable

that knowledge bases can be attached to view files as described in this report.

Partial pseudocode for the main program loop would contain code to switch

between numerous choices. To allow the operator to alter attribute settings, the

main control loop of the interface might be as follows.

decode user_action;

switch user_action

case alter_settings:

decode user_action;

switch user_action

case alter_textsize:

check user_action against text knowledge base

if ok, alter size

else call help with user action and return code

from knowledge base check.

case alter_color:

336

end switch.

end switch.

The pseudocode implies a primary sort on the user action to determine

whether the action is to alter the setting of the interface or perform some other

task. In particular, the operator may al_o issue commands to signal an applica-

tion or to ask for assistance. The operator may even be issuing a meaningless

or useless command. A secondary sort on the user action determines the spe-

cific action of the user. Before all but t;he most trivial action is executed, the

knowledge base associated with the action can queried to determine validity of

the action.

3.1.2. Knowledge of the Application

Knowledge of the apphcation(s) attached to the interface is often dynamic and

local information. For example, consider again the monitoring, control, and

testing of the pump/valve system. The v,:_lve monitoring module may have access

to a sub-knowledge base containing information about the valve. The valve

identifier, data formats, data ranges and data thresholds sent by the module

could be specified by the applications programmer when the module is written.

As the valve module is integrated into the application attributes specifying how

the valve is connected in the system, its backup units, its function in the system

and so on needs to be given. This forms a complex network of files containing

local information about parts of the int_'rface.

When a signal is sent to the valve module the effect of the signal on the

status of the interface can be determined by querying a sub-knowledge base with

information about the data signal sent t,) the valve module. Note that this check

can be performed before the signal is actually sent to operate the valve. This

raises interesting implications about the power the interface possesses versus

the power of the operator to control the interface. This implication is discussed

further in §3.1.4.

337

3.1.3. Assisting the Operator

A human-computer interface "manifests its usability through the speed and

accuracy with which the users can perform tasks with it; novices' ability to learn

to operate the system, and sporadic users' ability to relearn to operate it; and

all users' preference for operating the system" [6], [7]. Artificial intelligence can

be used to aid users of the interface, making the interface faster, more accurate,

and easier to learn and relearn. Help provided by the interface to the operator

is discussed in more detail in §4. Ideas on how an intelligent HCI can aid the

operator are discussed here. Some of these ideas are common sense rules, while

others are more abstract and perhaps difficult to implement.

First, since the interface needs to respond promptly to the operator,, see

[6] page 3-56, the interface should anticipate the operator's actions. At each

step in the interaction between the operator and the interface there is a small

set of valid actions, such as, open a file, write to a file, close a file, execute

a process and kill a process, with any invalid commands causing a call to the

help module of the interface. The interface should anticipate possible actions by

loading the appropriate files and processes from disk before they are demanded.

Least recently used files and processes can be maintained in memory or fast disk.

Evaluation of this pre-fetch memory management policy should be made for each

port of the TCMS interface, with a "tuning" of interface memory management

parameters as appropriate. Since this is an anticipatory policy, heuristics about

the operator's actions, perhaps gleaned from data on the operator's previous use

of the interface, may exist which can be used to decrease the system response

time of the interface. Attributes of the operator may also be used to determine

actions by the interface.

The TCMS interface should also assist the operator with helpful information.

A request for information may be generated directly by the operator or indirectly

by inappropriate actions. An intelligent HCI should be able to guide the operator

through the help module in the most efficient and _:.formative way. For example,

help provided a novice may differ considerable from help offered an expert, The

help offered should depend on the application, the current set of valid functions,

and the actions of the operator. For example, the help offered for a pump/valve

system should differ from help on a electrical circuit and direct help requests

should be handled differently from error generated help requests. Heuristics for

rules which determine how the help module of the interface responses need to
be determined.

338

3.1.4. Evaluating the Operator

Should a iHCI evaluate the operator of the interface? And, if the iHCI evaluates

the operator what control should be giw'_n to the operator and what control to

the interface? These are both fundamental questions which must be posed and

_knswered.

First, it is clear that the interface must monitor the operator to provide

a safe, secure, and convenient system. The operator's name, login identifier,

group, security level, experience level are all useful if not vital information for

the interface to perform intelligently. Clearly this information must be kept

secure since it can be used to allow assess for the reading and writing of files,

execution of processes, and logging information about the use of the system.

The operator's experience level is a dynamic attribute that could change be-

tween sessions or during a session with the interface. Often a person's ability

or experience in using an interface is evident to someone who watchs the inter-

action. An experienced user effortlessly moves through the interface efficiently

working, while a novice will randomly strike keys or generates mouse events

performing little or no useful work. By analogy, one can often tell if a musician

is good or bad by simply watching how effortlessly the musician plays his or her

instrument. It seems reasonable that heuristics can be developed which can be

used to predict the ability of the operator and configure the interface to better

suit the operator.

Several steps are required before one can propose a method for modeling the

use of an interface and use the model to estimate a user's level of experience.

First, do variables exist which can be used to accurately predict user ability?

Can information about the operator's ability be used to configure the interface in

such a manner to make use of the interface more natural to the user? Assuming

the interface can be so configured, is is worthwhile (cost effective) dynamically

monitor the user and alter the configuration of the interface automatically?

A search of the literature on user interface design should be conducted to de-

termine the existence of studies identifying variables that can be used to predict

user ability. If no relevant research exi_,;ts, a study can be made to determine

if such variables can be found. Only once such variables are identified it is

reasonable to attempt to monitor these variables.

There are numerous statistics which should aid in predicting experience level.

For example: total time using the interface, user interaction time, number of

help requests, number of cancel selections, number of no selections, number and

type of open or closed graphics in the display, the validity of the input from the

]39

user and the responsiveness of the user to information supplied by the interface.

Once a set of predictor parameters is determined, variables can be embedded as

"hooks" inside of the TCMS interface to collect data on these parameters. The

data can then be used to infer a level of experience.

Assume for now that the experience of the operator can be determined from

variables associated with use of the interface. A basic qqestion is whether oper-

ators of the TCMS interface should be ranked at an experience level Some may

not feel comfortable if they realized that their actions were being monitored and

that this information is being used to rate them. A more positive attitude is

that the monitoring is being conducted to provide a more responsive tool for
the user.

There are four experience levels often mentioned in the literature: novice,

intermittent, transfer and expert. An operator can be a rated by both expe-

rience in use of the interface and knowledge about the application attached to

the interface. Shneiderman [7] gives many characterizations of users classified

by type. Heuristics based on guidelines and studies such as these should be de-

veloped to allow configuration of the interface based on the user's profile. These

heuristics would be used to control how information is presented to the user.

For exaxnple, a novice user should be presented with bar style menus which are

always visible, while an expert may prefer a pop-up menu. Novice users may

be directed to a complete, yet succinct description of available commands, while

an expert user may only need a fist of key strokes and abbreviations for the

commands. Inaction or inappropriate actions may be handled differently for

different user experience levels.

The questions raised by the idea of incorporating intelligence into a human-

computer interface are intriguing, but answers to these questions are beyond the

scope of this document.

340

4. The Help Facility for the TCMS
Interface

This chapter deals with the help facility £_r the interface. There are two central

concerns addressed in the chapter. First, the help facility should work with

an expert system to supply timely and tt_eful information to the operator, and

second the help facility should offer an intricate network of textual and graphical

information through which it is nevertheless easy for the operator to navigate.

Default help information on the use of the interface should always be provided

and application dependent help should be easy to incorporate into the TCMS

interface.

It is proposed that a hypertext system be considered for implementing the

help facility. The author of this report is not an expert on hypertext, and so,

only the desired properties of the help facility and methods of integrating it with

the other modules of the TCMS interface are presented. These requirements and

specifications serve to define the needed capabilities of the help module.

4.1. Properties of the Help Facility

The help module supplied as part of the TCMS interface should be able to

display many layers of useful information to the operator. Any human-computer

interface must be capable of supplying help on demand of the operator. A

sophisticated HCI such as the TCMS interface requires a help facility capable of

supplying help on how to use of the interface, together with information on the

application(s) attached to the interface. This help information may range from

simple panels of available commands, to manual pages, to schematic diagrams.

Hypertext systems seem to offer this flexible network of textual and graphical

information [5], [4].

341

An iHCI should be able to infer from the state of the interface which help

information would be most useful to the operator, and if necessary display the

assistance automatically. Predictive variables such as experience level, clearance

level, and job code, could be used to determine how the operator is guided

through the help facility. A consistent method of obtaining help should be

offered. By default, one click of the middle mouse button activates the help

facility.

J

4.2. Integrating the Help Facility into the TCMS Interface

The help module must be able to access files stored in view files. The help

module must be capable of forming logical links among these stored help files

and provide a convenient technique for navigating through the network of help

files.

A default help system is included in the utility menu supplied with the

interface. These help files serve to guide the operator in the use of the interface

and are rather simple. More sophisticated help facilities need to be provided in

future version of the TCMS interface.

342

_j

5. Manual Pages

Manual pages for the interface are partitioned by level of complexity. Tools

for creating input objects are listed in a separate section. Also system utilities

to edit, play, collect statistics on, and verify the integrity of an interface are

provided.

Every view file created with a tool provided by the TCMS interface toolkit

can have a list of help and knowledge base files attached to the data source list

of the view. The option -a file.hip ... appends the listed help files to the view.

The option -k flle.k ... appends the listed knowledge base files to the view.

System default help and knowledge base files are included in certain views when
the view are created.

Each object has an external name by which it can be referenced. The default

name of the object is the name of its type. For example, by default all objects

created with Ctz are named tx and stored in the file tz. v. The -o flle.v option

can be used to redirect the output of a, command to a named view file. The

name of the file then serves as the exter:aal name of the object.

The option lists for some commands may be quite lengthy. The -f file option

is used to force the tool to read its option list from the named file.

The example programs which appem: in the DV-Tools Users' Guide provide

helpful templates which can be modified to write the code for some of the tools

contained in this manual.

343

5.1. Primitive Graphic Object Facilities

The TCMS toolkit supports 7 low level graphical primitives: arc, circle, line,

polygon, rectangle, text, and vector text. These primitives can be combined to

form more complex objects such as windows, menus and icons. Each of these 7

objects can be created and saved as view files using a function of the form C??,

where ?? is a two letter abbreviation for the objects.

Each attribute of the graphical object is connected to a variable descriptor

which can be used to alter the object's appearance. Often, attributes of primitive

objects are set by default since the attributes more properly belong to the higher

level objects created using the primitive objects. For example, when creating a

menu, the textual names of the menu items may be important, and one could

use Ctx to create these text objects. However, the position and color of the

menu items need not be specified when the Ctx command is used.

The example program create_view, c in the DV-Tools User's Guide provides

a template for creating the tools found in this section.

344

/

Car(l) Car(l)

NAME

Car - create a view containing an a::c object.

SYNOPSIS

Car [options]

DESCRIPTION

Car creates an arc object which is stored, by default, in the view file ar.v.

Options can be used to:

(1) append knowledge about the arc to the view file.

(2) append help documentation about the arc to the view file.

(3) redirect the output of Car to a view file.

OPTIONS

-e float float gives the position of the center of the arc in a user defined

world coordinate system. The default center is (0.0,0.0)

-d direction specifies either CLOCKWISE or

COUNTER_CLOCKWISE as the direction for drawing the arc.

COUNTER_CLOCKWISE is the default.

-e float float gives the position of the end point of the arc. (-1.0, 0.0) is

the default end point.

-fg color where color is one of a predefmed list of foreground colors. A

default foreground of white is used.

-It line_type only SOLID..LINE is supported at present.

-lw integer specifies the width of the arc in pixels.

-s float float gives the position of the start point of the arc. (1.0, 0.0) is

the default starting position of the arc.

345

Cci() Cci(1)

NAME

Cci - create a view file containing a circle object.

SYNOPSIS

Cci [options]

DESCRIPTION

Cci creates a circle object which is stored, by default, in the view file ci.v.

Options can be used to:

(1) append knowledge about the circle to the view file.

(2) append help documentation about the circle to the view file.

(3) redirect the output of Cci to a view file.

OPTIONS

-c float float gives the position of the center of the circle. A default value

of (0.0, 0.0) is used.

-fg color where color is one of a predefmed list of foreground colors. A

default foreground of white is used.

-It line_type only SOLIDLINE is supported at present. A default value

of (0.0, 0.0) is used.

-lw integer specifying the width of the circle in pixels.

-r float float gives the position of a point on the circumference of the

circle. The default is (1.0, 0.0).

346

Cln(1) Cln(1)

NAME

Cln - create a view file containing a line object.

SYNOPSIS

Cln [options]

DESCRIPTION

Cln creates a line object which is stored, by default, in the view file ln.v.

Options can be used to:

(1) append knowledge about the line to the view file.

(2) append help documentation about the line to the view file.

(3) redirect the output of Cln to a view file.

OPTIONS

-e float float specifies the end position in a user defined world coordinate

system. A default value of (1.0, 1.0) is used.

-fg color where color is one of a predefmed list of foreground colors. A

default foreground of white is used.

-It llne_type only SOLIDLINE is supported at present.

-lw integer specifies the width of the line in pixels.

-s float float specifies the position in a user defined world coordinate

system for the starting point of the line. A default value of (0.0, 0.0)

is used.

347

Cre() Cre()

NAME

Cre - create a view file containing a rectangle object.

SYNOPSIS

Cre [options]

DEgClqLIPTION

Cre creates a rectangle object which is stored, by default, in the view file

re.v. Options can be used to:

(1) append knowledge about the text to the view file.

(2) append help documentation about the text to the view file.

(3) redirect the output of Cre to a view file.

OPTIONS

-fs fill_status determines how the rectangle is filled, fill_status may

be one of the values FILLED_OBJECT or UNFILLED_OBJECT. A

filled rectangle is drawn to its borders in the foreground color ignor-

ing any line type and width settings for the boundary, while only the

boundaries are drawn using the line type and line width attributes

when the rectangle is unfilled.

-fg color where color is one of a predefined list of foreground colors. A

default foreground of white is used.

-11 float float specifies the position in a user defined world coordinate

system for the lower left corner of the rectangle. A default value of

(0.0, 0.0) is used.

-It line_type only SOLID_LINE is supported at present.

-lw integer specifies the width of the line in pixels.

-ur float float specifies the position in a user defined world coordinate

system for the upper right comer of the rectangle. A default value of

(1.0, 1.0) is used.

348

Ctx(1) Ctx(1)

NAME

Ctx - create a view file containing :_ text object.

SYNOPSIS

Ctx [options]

DESCRIPTION

Ctx creates a text object which is _tored, by default, in the view file tx.v.

Options can be used to:

(1) append knowledge about the text to the view file.

(2) append help documentation about the text to the view file.

(3) redirect the output of Ctx to a view file.

System default files tx. k and tx. hip axe provided.

OPTIONS

-bE color where color is one of t:,redefined list of background colors. A

default background of black is used.

-d direction specifies the text direction to be either HORIZONTAL or
VERTICAL.

-fg color where color is one of a predefined list of foreground colors. A

default foreground of white is used.

-j justification one of 9 possible values of logically ORing the constants

AT.LEFT_EDGE, CENTERED, AT..RIGHT_EDGE with

AT_TOP.EDGE, CENTERED, AT..BOTTOM_EDGE. The justifica-
tion determines

how the text is placed with respect to the anchor point for the text

string. A default value of CENTERED is used.

-p float float specifies the anchor position of the text in a user deter-

mined world coordinate system. The default position is (0,0).

-s size gives an integer specifying text size in hardware. A default value
of 2 is used.

-t string where string is a char_mter string which must be enclosed in

double quotation marks " if the string contains white space. A NULL

string is used when the -t option is not supplied.

349

Cvt(1) Cvt{1)

NAME

Cvt - create a view file containing a vector text object.

SYNOPSIS

Cvt [options]

DESCRIPTION

Cvt creates a vector text object which is stored, by default, in the view

file vt.v. Options can be used to:

(1) append knowledge about the vector text to the view file.

(2) append help documentation about the vector text to the view file.

(3) redirect the output of Cvt to a view file.

System default files yr. hlp and yr. k are provided.

OPTIONS

-d direction specifies the text direction to be either HORIZONTAL or

VERTICAL.

-fg color where color is one of a predefmed list of foreground colors. A

default foreground of white is used.

-j justification one of 9 possible values of logically ORing the constants

AT_LEFT_EDGE, CENTERED, AT_tLIGHT_EDGE with

AT_TOP_EDGE, CENTERED, AT_BOTTOM..EDGE. The justifica-
tion determines

how the text is placed with respect to the anchor point for the text

string. A default value of CENTERED is used.

-p float float a pair of numbers specifying the anchor position of the text

in a user determined world coordinate system. The default position

is (0,0).

-t string where string is a character string which must be enclosed in

double quotation marks " if the string contains white space. A NULL

string is used when the -t option is not supplied.

-ta float a number giving the angle in degrees from the text base line to
the horizontal. A default value of 0.0 is used.

-tc float a number giving the intercharacter spacing of the text. Normally

set to 0.0, the character spacing represents a fraction of the character
width to add between characters.

35O

¢vt(1) cvt(1)

-tf font one of a set of 15 Hershey fonts can be specified.

-th float sets the text height with respect to the text basehne. Normally

set to 1.0 giving a default size of 1024 default world coordinate unit

high.

-tl float a number giving the interline spacing of the text. Normally set

to 0.0, the line spacing represents a fraction of the character height

to add between fines.

-ts float sets the text slant by specifying the angle in degrees by which

the text is rotated from normal toward the rotated text baseline.

-tw float sets the text height with respect to the text baseline. Normally

set to 1.0 giving a default size of 1024 default world coordinate units

high.

351

5.2. Intermediate Level Facilities

This section of the manual presents the tools: Cdr, Cmi, Csd and Ctt. which are

used to create drawings, menu items, subdrawings, and threshold tables. The

primitive graphical objects which can be created using the low level facilities

of section 5.1 are not complex enough to build a complete human-computer
interface. It is convenient to define an intermediate level of tools which can be

used to create intermediate widgets such as menu items and pictographs that

can be later included in higher level objects.

Pictographs can be constructed using the low level graphical objects created

using the utilities described in §5.1. These pictographs are created using the

facilities Cdr and Csd, which create drawing and subdrawing objects. The Cmi

facility is used to connect a process to a text, vector text string, or a pictograph

object. The process can be signaled when the object is selected. The Ctt facility

can be used to create a collection of graphic objects stored in a threshold table.

A look-up valve is used to select which of the objects in the table to display.

The program viowmerge, c from the DV-Tools User's Guide provides a tem-

plate for Cdr and Csd. Creation of threshold tablesisshown in view_create, c

352

Cdr(2) Cdr(2)

NAME

Cdr - create a view file containing a drawing object.

SYNOPSIS

Cdr [options]

DESCRIPTION

Cdr creates a drawing object which is stored, by default, in the view file

dr.v. Options can be used to:

(1) append knowledge about the &:awing to the view file.

(2) append help documentation about the drawing to the view file.

(3) redirect the output of Cdr to a view file.

Drawing objects contain a deque of objects and a symbol table of names

for every named object in the deque. Cdr is used to merge a number of

separate graphical primitives into more complex drawings.

OPTIONS

-bg color where color is one of a predefined list of background colors. A

default background of black is used. The flag NO_BACKGROUND

means that the background is to be transparent.

-fg color where color is one of a predefmed list of foreground colors. A

default foreground of white is used.

-1 fllel.v namel ... specifies a list of (view file, name) pairs. The view

file contains the graphical object to be merged into the drawing and

the name is a text string used to identify the object. If the name is

missing, the default name of the object stored in the view file is used.

353

cmi(2) Cmi(2)

NAME

Cmi - create a selectable graphic object with an associated side-effect.

SYNOPSIS

Cmi [options] -p process -v file.v

DESCRIPTION

Carl combines either a text object, vector text object, or an icon specified

by the -v options with a process to form one view file that can be included

as part of a menu. The process specified by the command line is a text

string, which Should be enclosed in double quotes ;i if it contains ¢vhite

space. The process is a process name together with an optional list of

arguments. The process name is stored in the data source list of the

view and the graphic object is stored in the drawing for the view. The

argument list for the process, if present, is stored as a text object in the

drawing. A border for the menu item is drawn as a bounding box for

the graphic object. Note that the position, size, interaction technique and

highlighting method are not specified when a menu item is created since

these are properties of the menu and the interface.

OPTIONS

-b border specifies the style of the border. Values for border are BOX,

NESTED.BOX, and NO..BORDER.

SEE ALSO

Cmenu(3)

354

Csd(2) Csd(2_

NAME

Csd - create a view file containing a subdrawing object.

SYNOPSIS

Csd [options]

DESCRIPTION

Csd creates a drawing object which is stored, by default, in the view file

sd.v. Options can be used to:

(1) append knowledge about the subdrawing to the view file.

(2) append help documentation about the subdrawing to the view file.

(3) redirect the output of Csd to a view file.

Subrawing objects are static drawings with no dynamic elements. When

subdrawings are saved in a view file, they are included or referenced. In-

cluded subdrawings are copied into the view file, while referenced sub-

drawings store only the file name of the drawing view file.

OPTIONS

-fg color where color is one of a predefined list of foreground colors. A

default foreground of white is used.

-p float float specifies a center point for the subdrawing. A default value

of (0,0) is used.

355

Ctt(2) Ctt(2)

NAME

Ctt - create a view file containing a threshold table object.

SYNOPSIS

Ctt [options]

DESCRIPTION

Ctt creates a drawing object which is stored, by default, in the view file

tt.v. Options can be used to:

(1) append knowledge about the threshold table to the view file.

(2) append help documentation about the subdrawing to the view file.

(3) redirect the output of Csd to a view file.

A threshold table object is used to map a value to an object. The value

of a variable descriptor determines which object from the table will be

displayed.

OPTIONS

-rgb value integer integer integer ... defines a red-green-blue color

threshold table. The integers should be in the range 0 to 255.

-lu value index.., defines a color look-up threshold table that used the

index to access the display device's color look-up table.

-l value flle.v ... specifies a threshold table contain the objects found in
the view files of the list.

356

5.3. Input Facilities

There are 8 tools which can be used to create input devices: Cchecklist, Ccom-

biner, Cmenu, Cmulti, Cpalette, Cpanel, Cslider and Cto&gle. See §2.1 and 2.1.2.

Each input device is connected to an interaction handler specified by the -vn

option with the interactions handlers sut_plied by DataViews software used as

defaults. A layout for the interaction handlers specified by the -v option de-

termines how the input object will appear. The layout file must conform to

the specification for labeled areas and t_;xt strings. See the DV-Tools Users'

Guide and Reference manual for details. Select, cancel, done, restore and clear

keys can be set using the -select string, -cancel string, -done string,

-restore string and -clear string options. The string supplied to these

options should be enclosed in " if it contains white space.

The programs IH_menu. c and forms, c provide templates for creating input

technique view files.

357

Cchecklist(3) Cchecklist(3)

NAME

Cchecklist - create a checklist of objects and associated actions.

SYNOPSIS

Cchecklist [options] -1 iteml.v ... itemN.v

DESCRIPTION

A checklist allows selection from a list of objects. The list of objects are

pictographs with associated check areas. A check symbol is displayed in

the check area when the object is selected. Each object has a corresponding

variable which is set to 1.0 or 0.0 when the object is selected or deselected.

The list of view files specified in the command line should have been created

using the C,*£ tools. When the input from the checklist is accepted by the

operator, the processes associated with each checked item is executed.

OPTIONS

-bg color specifies the background color. Black is the default.

-c flle.v is used to define a check symbol. A default symbol is used if this

option is not specified.

-fg color specifies the foreground color. White is the default.

-m integer integer specifies layout for objects as a matrix of rows and
columns.

-p float float specifies the position of the checklist.

-vn interaction_handler Only VNchecklist is provided as an interaction
handler.

BUGS

More than one checklist interaction handler should be available.

358

Ccombiner(3) Ccombiner(3)

NAME

Ccombiner - create a combination of input objects.

SYNOPSIS

Ccombiner [options]

DESCRIPTION

A combiner interaction handler allows a collection of checklists, menus,

palettes, panels, sliders and toggles to be combined into one input object.

At least one input object should be specified in the command line option

list. Placement of each input object included in the combination is speci-

fied by a pair of coordinates giving diametrically opposite corners for the

input object. The coordinate system may be chosen by the user.

OPTIONS

-bg color specifies the background color. Black is the default.

-fg color specifies the foreground color. White is the default.

-c filel.v (x,, yi), (x2, y2).-, specifies a list of checklists objects together

with the positions of diametrically opposite corners for each checklist.

-m filel.v (xt, yl), (x2, y2) spe_:ifies a list of menus objects together

with their positions.

-pn fllel.v (x,, yt), (x2,y2)... specifies a list of panel objects together

with their positions.

-pl fllel.v (xt, yl), (x2, y2).., sp,_ifies a list of palette objects together

with their positions.

-s fllel.v (x_, y_), (x2, y2). • • spe,'ifies a list of slider objects together with

their positions.

-t fllel.v (x,, y,), (x2, y2).., specifies a list of toggle objects together with

their positions.

-vn interaction_handler Only VNcombiner is provided as an interac-

tion handler.

BUGS

More than one combiner interaction handler should be available.

359

Cmenu(3) Cmenu(3)

NAME

Cmenu - create a menu by combining one or more menu items.

SYNOPSIS

Cmenu [options] -1 iteml.v ... itemN.v

DESCRIPTION

Cmenu creates a menu from a number of existent menu items which have

been stored as view files. The menu is stored as a view file. The menu

style, trigger for selection, and highlighting method are set by default to

BAR, click left mouse button inside item area, and toggle border between

thick and thin when the cursor is within the menu items.

OPTIONS

-bg color specifies the background color. Black is the default.

-fg color specifies the foreground color. White is the default.

-e echo defines how menu items will be echoed. Valid values are BOR-

DER, which is the default, FILL, and NONE. The BORDER option

toggles the fine thickness of a text menu item between thick and thin.

The bounding box of a icon menu item is drawn when the BORDER

option is used. FILL toggles the fill of the menu item area between

filled and unfilled and is valid only for text menus. The menu is never

highlighted when the NONE option is specified.

-p poll controls whether or not the menu item highlights whenever the

cursor is inside of the menu item. The default is YES which high-

lights the menu item whenever the cursor is inside of the menu item

bounding box. NO highlights the item only when the pick or selection
is made.

-s style_flag There are 10 available menu styles: H_BAR, V_BAR,

H.STACK, V.STACK, POP_UP, PULL_DOWN, PULL_UP,

PULL.LEFT, PULL_RIGHT, and CARDS.

-sp space_flag Setting the space flag to NO causes the last highlighted

menu item to remain highlighted when the cursor is not in the menu

item area. The default setting is NO.

360

Cmenu(3) Cmenu(3)

-st status..flag setting the status flag to YES causes the menu's control

variable to be used to highlight the corresponding menu item when

the menu is initially drawn. The value NO highlights no initial menu
item.

-vn interaction_handler Only VNmenu is provided as an interaction
handler.

BUGS

More than one menu interaction handler should be available.

361

Cmulti(3) Cmulti(3)

NAME

Cmulti - create a multiplexor allowing one input technique to be shared

by several input objects.

SYNOPSIS

Cmulti [options] -m file.v -1 filel.v ...

DESCRIPTION

A menu, specifiedby the -m option, isused to selectwhich of the input

objects listedafterthe -loption

OPTIONS

-bg color specifies the background color. Black is the default.

-fg color specifies the foreground color. White is the default.

-e echo defines how menu items will be echoed. Valid values are BOR-

DER, which is the default, FILL, and NONE. The BORDER option

toggles the line thickness of a text menu item between thick and thin.

The bounding box of a icon menu item is drawn when the BORDER

option is used. FILL toggles the fill of the menu item area between

filled and unfilled and is valid only for text menus. The menu is never

highlighted when the NONE option is specified.

-p poll controls whether or not the menu item highlights whenever the

cursor is inside of the menu item. The default is YES which high-

lights the menu item whenever the cursor is inside of the menu item

bounding box. NO highlights the item only when the pick or selection
is made.

-s style..flag There are 10 available menu styles: H_.BAR, V_BAR,

H.STACK, V_STACK, POP_UP, PULL..DOWN, PULL_UP,

PULL_LEFT, PULL..RIGHT, and CARDS.

-sp space_flag setting the space flag to NO causes the last highlighted

menu item to remain highlighted when the cursor is not in the menu

item area. The default setting is NO.

-st status_flag setting the status flag to YES causes the menu's control

variable to be used to highlight the corresponding menu item when

362

Cmulti(3) Cmulti(3)

the menu is initially drawn. The value NO highlights no initial menu
item.

-vn interaction_handler Only VNmulti is provided as an interaction
handler.

BUGS

More than one menu interaction ha.adler should be available.

363

Cpalette(3) Cpalette(3)

NAME
Cpalette - create a color palette.

SYNOPSIS

Cpalette [options] -v file.v

DESCRIPTION

Cpalette creates a palette from a threshold table. The view file specified

by the -v options should be created with the Ctt tool.

OPTIONS

-bg color specifies the background color. Black is the default.

-fg color specifies the foreground color. White is the default.

-p poll controls whether or not the palette highlights whenever the cursor

is inside of the palette. The default is YES which echos the palette se-

lection whenever the cursor is inside of a palette item. NO highlights

the item only when the pick or selection is made.

-vn interaction_handler Only VNpalette is provided as an interaction

handler.

BUGS

More than one palette interaction handler should be available.

364

Cpanel(3) Cpanel(3)

NAME

Cpanel - create an text input panel for a single line of text.

SYNOPSIS

Cpanel [options] -p process -v file.v

DESCRIPTION

Cpanel creates a text input panel. A view file file.v is used to supply a

drawing for the panel. The view file must contain a closed region for input

labeled Text_Input.area and optionally four regions labeled Restore.area,

Clear.area, Done.area, and Cancel.area. The text input area defines where

the input string will be displayed, tf the string is too long to fit within the

text input area, the string is scrolled to the left. The restore, clear, done,

and cancel areas define buttons which respectively restore the input string

to its original value, set the input string to NULL, signal completion of

the input, and abort the interaction returning a cancel code and NULL

string.

OPTIONS

-bg color specifies the background color. Black is the default.

-fg color specifies the foreground color. White is the default.

-b bell_flag A value of YES (default) sounds the bell when there is too

much text for the interaction handler to accept.

-c caret_flag uses the caret symbol {o mark the current cursor location.

Values are YES (default) and NO.

-vn interaction..handler Only VNtext is provided as an interaction han-

dler.

BUGS

More than one text interaction ha:adler should be available.

3 6 5

Cslider(3) . Cslider{3)

NAME

Cslider - create a slider (valuator) for input of a floating point number.

SYNOPSIS

Cslider [options] -p process -v file.v

DESCRIPTION

Create a slider input object for floating point values. When the slider

value is accepted, the value is sent as input to the process.

OPTIONS

-bg color specifies the background color. Black is the default.

-fg color specifies the foreground color. White is the default.

-dn flle.v float float specifies a DOWN button view file and its position.

-ine float controls the percentage of the variable range by which the slider

position changes when the UP and DOWN buttons are selected.

-p poll controls whether or not the slider highlights whenever the cursor
is inside of the slider. The default is YES which echos the slider

selection whenever the cursor is inside of a slider item. NO highlights

the item only when the pick or selection is made.

-r rain max specifies a range for the slider. The default is 0.0 to 1.0.

-t type specifies either a slider or scrollbar representation when drawing

the slider. Valid types are SLIDER and SCROLL.

-up flle.v float float specifies a UP button view file and its position.

-var string float float controls position and appearance of a variable

string describing the slider data.

-vn interaction_handler Only VNslider is provided as an interaction
handler.

BUGS

More than one slider interaction handler should be available.

366

Ctoggle(3) Ctoggle(3

NAME

Ctoggle - create a toggle which can send discrete values to a process.

SYNOPSIS

Ctoggle [options] -p process -v file.v

DESCRIPTION

Ctoggle creates graphic switch that is attached to the input pipe of a

process. The view file contains either a sequence of text strings or graphic

icons. If a list of text strings is specified, the display will toggle through

the list. If text strings are not used the sequence of iconic objects stored

in the drawing of the view file will be sequentially displayed. By default

the display list wraps around cyclicly.

The processes associated with the selected option will execute when the

input is accepted.

OPTIONS

-bg color specifies the background color. Black is the default.

-fg color specifies the foreground _:olor. White is the default.

-vn interaction_handler Only VNtoggle is provided as an interaction

handler.

-w wrap_flag controls whether th_ display cycles from the last to the first

object in the object list or bounces between the last object and first

object through intermediate objects. The default is YES, causing the

display to cycle, while a value of NO causes the display to bounce.

BUGS

More than one toggle interaction handler should be available.

367

5.4. Output Facilities

At present, the TCMS interface package does not contain tools for creating out-

put monitoring widgets such as line graphs, bar charts and pie charts. DV-Draw

provides a convenient, interactive environment for creating such objects. Later

versions of the TCMS interface package can provide facilities for creating these

widgets. This would promote a consistent style for creating the interface, it may

be more efficient, and it may provide for more power in creating output moni-

toring widgets. See Display Formatters [2] and Writing Display Formatters [3].

368

5.5. High Level Tools

The high level facilities: Cicon, Cinterfa_:e, CscroU and Cwindow are presented

in this section of the manual.

An icon is a closed window. A window can be either open or closed, active

or inactive. An open active window can either be interactive or noninteractive.

A scroll window is an interactive window which can be scrolled horizontally,

vertically or both.

The tool Cinterface is used to create an interface which can be played.

The specification of options for the facilities contained in this section are not

complete.

:!l6 9

Cicon(,.'.+) Cicon(5)

NAME

Cicon - create an icon.

SYNOPSIS

Cicon [options] -cl file.v (x,y) -op flle.v (x,y)

DESCRIPTION

Cicon is used to create an icon. An icon is a closed window. The -cl

option specifies the position an drawing for the closed icon. The drawing

should have been created using the Cdr tool. The -op option specifies the

position and drawing for the open window. The open window should have

been created using the Cwindow tool. Selecting a closed icon opens it. An

open window can be iconified using the "Utilities" menu provided with the
interface.

OPTIONS

-fg color where color is one of a predefmed list of foreground colors.

default foreground of white is used.

BUGS

The specification of Cleon is incomplete.

A

370

Cinterface(5) Cinterface(5)

NAME

Cinterface - create a interface from a collection of view files.

SYNOPSIS

Cinterface [options]

DESCRIPTION

Cinterface is used to create an int,_.rface. An interface must contain one

or more menus. Each interface contains a utility menu which can be used

by the operator to change the attributes of the graphic objects within the

interface. The utility menu is supplied as part of the TCMS interface

toolkit. Application menus can optionally be added to the interface.

OPTIONS

-bg color where color is one of a])redefined list of background colors. A

default background of black is used.

-i flle.v (x,, y,)(z2, y2).., specifi_ a list of icons and their positions.

-m flle.v (Xx, y_)(x2, y2).., specifies a list of menus and their positions.

-s flle.v (xl, y,)(x2, y2).., specifie_ a list of scroll windows and their po-
sitions.

-w flle.v (z,, y,)(x2, y2).., specifie_ a list of windows and their positions.

BUGS

The specification of Cinterfac¢ is incomplete.

371

Cscroll(5) Cscroll()

NAME

Cscroll - create a scroll window.

SYNOPSIS

Cscroll [options]

DESCRIPTION

Cscroll is used to create a scroll window.

OPTIONS

-bg color where color is one of a predefined list of background colors. A

default background of black is used.

BUGS

The specification of Cscroll is incomplete.

372

Cwindow(5) Cwindow(5)

NAME

Cwindow - create a window contain other graphic objects.

SYNOPSIS

Cwindow [options]

DESCRIPTION

Cwindow is used to create a complex graphic object consisting of one or

more simple objects.

OPTIONS

-b border specifies the style of the border. Values for border are BOX,

NESTED_BOX, and NO_BORDER.

-bg color where color is one of a predefined list of background colors. A

default background of black is used.

-1 flle.v float float ... list of objects and positions for inclusion in the

window.

BUGS

The specification of Cwindow is incomplete.

2,73

5.6. Utility Tools

There are several utilities which support the interface.

374

v

colstat(6)

NAME

colstat - collect statistics of the use of the interface.

colstat_6)

SYNOPSIS

colstat [options]

DESCRIPTION

Statistics on the use of the interface are collected from a log file of statistics.

The system default file (/usr/local/tcms/adm/tcms. Zog) is used as the

log file, unless another file is specified with the -f option.

OPTIONS

-e sort output by command.

-d sort output by date.

-f file use the specified file for statistics.

-s sort output by user time on the system.

-u user print statistics for the sp_,cified user.

BUGS

Specification of which user interactions should be recorded in the log file
has not been determined.

(" .)

375

edview(6) edview(6)

NAME

edview - edit a view file.

SYNOPSIS

edview [options] file.v

DESCRIPTION

Edview is used to change attributes, control points, and names of objects

contained inside of a view file. Each primitive of object supported by the

TCMS interface can be edited by supplying an attribute-value list. The

attribute indicates which characteristic of the object to change and the

value gives the characteristics new value. Compound objects can be edited

by specifying the name of a primitive object contained in the compound

object together with an attribute value pair.

OPTIONS

-ar attribute-value list

-ci attribute-value list

-In attribute-value list

-re attribute-value list

-py attribute-value list

-tx attribute-value list

-vt attribute-value list

-dr name-attribute-value list

-mi name-attribute-value list

-sd name-attribute-value list

-tt name-attribute-value list

-checklist name-attribute-value list

-menu name-attribute-value list

-palette name-attribute-value list

-panel name-attribute-value list

-slider name-attribute-value list

376

edview(6) edview(6)

-toggle name-attribute-value llst

-icon name-attribute-value list

-scroll name-attribute-value list

-window name-attribute-value list

-interface name-attribute-value list

SEE ALSO

prview(6)

377

fuzz(6) fuzz(6)

NAME

fuzz - verify setting in the interface against a knowledge base of human-

computer interface guidelines.

SYNOPSIS

fuzz [options]

DESCRIPTION

Fuzz is similar to the lint routine which detects features of a C program

that are likely to be bugs, non-portable, or wasteful. Fuzz is used to verify

that an interface does not violate human-factor guidelines.

BUGS

There are some guidelines which can not be checked by fuzz, because they

deal with the dynamic display of the interface.

378

I

play(6) play(6_

NAME

play - play an interface, reading i_s view file opening the processes and

files in its data source list and displaying its drawing.

SYNOPSIS

play interface

DESCRIPTION

Play is use to execute an interface_ The code given in playback.c from

the DV-Tools User's Guide provides a template for the play facility.

BUGS

Only view files created with the Cinterface command can be played.

379

prview(6) prview(6)

NAME

prview - print a view.

SYNOPSIS

prview file.v

DESCRIPTION

Object names, positions, and attributes contained in a view file are printed

This information can be useful when editing a view file.

380

6. Conclusions and Recommendations

A brief summary of the preliminary desigrt contained in this report is presented.

Recommendations for how to proceed in implementing the design are discussed.

6.1. Summary of the Report

This report provides a preliminary design for an intelligent human-computer

interface for the TCMS at Kennedy Space Center. The report describes tools

that can be used to build complex graphical objects such as menus, valuators,

windows and icons from primitive parts or widgets.

One requirement for the TCMS interface is that it behave in an intelligent

and consistent manner. A definition of an intelligent human-computer interface

is given and methods for embedding int,41igence into the objects created with
the TCMS toolkit are discussed.

A concern related to the intelligence c_f the interface is the design of the help

facility. Help provided by the TCMS interface can be quite varied as it .includes

not only help in using the interface, but also help for testing, monitoring and

controlling the applications attached to the interface. A hypertext based help

facility is proposed.

A manual describing the tools and utilities of the TCMS toolkit is provided.

The tools range from simple tools which create basic objects such as lines, rect-

angles and text, to complex tools that create menus, windows and complete

interfaces. A number of utility functions are also included in the toolkit. These

utilities serve to execute an interface, collect statistics on its use, edit its at-

tributes and perform other useful functions.

381

6.2. Recommendations for Implementing the Design

Implementing the TCMS interface will require time, people and other expenses.

A cost estimate for the implementation needs to be prepared.

The preliminary design provided by this report should be expanded into a

detailed design for the interface. Selection of commercial off-the-shelf software

packages for implementing the knowledge module and the help module must be

made before this detailed design can be produced.

A team of designers, programmers and administrators should be formed to

implement the interface. This team should be partitioned along the lines of

the three major modules of the interface: the graphics module, the knowledge

module, and the help module. It is suggested that three 2 person teams be

formed to implement each module. Each person in the team should be a com-

petent programmer. The team leader should be an expert in one or more of

the three identified areas. One administrator for the teams should be capable

of coordinating these teams and performing other administrative duties.

382

Bibliography

L

[11

[2]

[3]

[4]

Is]

[6]

[7]

DV-Draw Reference Manual, V.I. Corportation, Amherst, MA, 01002, ver-

sion 6.0 ed., 1988.

D V-Tool_ Reference Manual, V.I. Corportation, Amherst, MA, 01002, ver-

sion 6.0 ed., 1988.

DV-Tools User's Guide, V.I. Corportation, Amherst, MA, 01002, version 6.0

ed., 1988.

B. CAMPBELL AND J. M. GOODMAN, Ham: a general purpose hypertext

absfraci machine, Communications of the ACM, 31 (1988), pp. 856-861.

J. CONKLIN, Hyper_exf: an introducf_on and survey, Computer, 20 (1987),

pp. 17-41.

M. RUDISILL, D. GILLIAN, ET AL., Space Station Information System

Human-Computer Interface Guide, 'Iech. Rep., National Aeronautics and

Space Administration, Lyndon B. Johnson Space Center, Houston, Texas,

May 1988.

B. SHNEIDERMANN, Designing the User Interface, Addison-Wesley Publish-

ing Company, 1987.

333

